4.7 Article

DeMix-Q: Quantification-Centered Data Processing Workflow

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 15, 期 4, 页码 1467-1478

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.O115.055475

关键词

-

资金

  1. Knut and Alice Wallenberg Foundation [KAW 2010.0022]

向作者/读者索取更多资源

For historical reasons, most proteomics workflows focus on MS/MS identification but consider quantification as the end point of a comparative study. The stochastic data-dependent MS/MS acquisition (DDA) gives low reproducibility of peptide identifications from one run to another, which inevitably results in problems with missing values when quantifying the same peptide across a series of label-free experiments. However, the signal from the molecular ion is almost always present among the MS1 spectra. Contrary to what is frequently claimed, missing values do not have to be an intrinsic problem of DDA approaches that perform quantification at the MS1 level. The challenge is to perform sound peptide identity propagation across multiple high-resolution LC-MS/MS experiments, from runs with MS/MS-based identifications to runs where such information is absent. Here, we present a new analytical workflow DeMix-Q (https://github.com/userbz/DeMix-Q), which performs such propagation that recovers missing values reliably by using a novel scoring scheme for quality control. Compared with traditional workflows for DDA as well as previous DIA studies, DeMix-Q achieves deeper proteome coverage, fewer missing values, and lower quantification variance on a benchmark dataset. This quantification-centered workflow also enables flexible and robust proteome characterization based on covariation of peptide abundances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据