4.7 Article

Hydrogel electrolyte membrane with regulated pore effect to stabilize zinc anode in aqueous zinc-ion batteries

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 690, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2023.122243

关键词

Aqueous Zn -ion batteries; Hydrogel electrolyte membranes; Pore effect; In -situ guided crosslinking; Continuous ion channel

向作者/读者索取更多资源

In this study, a continuous, stable and fast ion transport channel was established through in-situ guided cross-linking of zinc alginate hydrogels on a porous membrane, overcoming the negative pore effect and effectively inhibiting the dendrite growth of zinc anodes and interfacial side reactions.
The unregulated dendrite growth and deleterious derivative reactions at Zn anodes lie in the path of research and industrialization of aqueous Zn-ion batteries (AZBs). The pore of the separator is a natural sieve for ion diffusion, but the high energy barrier for transmembrane transport can cause the bridging effect of ion congestion at the pore entrance, and induce the incubation of dendrites instead. In this work, a continuous, stable and fast ion transport channel is constructed by in-situ guided cross-linking of zinc alginate (ZA) hydrogels through the porous membrane to conquer the negative pore effect. The homogeneity and continuity of the channel structure, as well as the high ionic conductivity and zincophilicity of the ZA, can homogenize the electric field and reduce the energy barrier for ion transport. In battery systems, the physical ion shunting effect of a homogeneous pore structure, combined with the chemical/electrochemical effects of ZA guiding the diffusion of Zn2+ and binding free water, combat zinc dendrites and interfacial side reactions. The novel electrolyte membrane enables a highly reversible Zn plating/stripping to stabilize the Zn anode. This work provides illuminating insights into the regulation and application of pore effects in porous electrolyte membranes in metal-based batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据