4.6 Article

Conversion of polycarbosilane to silicon carbide: effect of an active filler and pyrolysis conditions

期刊

JOURNAL OF MATERIALS SCIENCE
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s10853-023-09056-4

关键词

-

向作者/读者索取更多资源

This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere on the ceramic conversion of polycarbosilane, and finds that the titanium silicide loaded polycarbosilane system heat treated under nitrogen atmosphere offers the best result of minimum shrinkage and better properties.
This paper reports the effect of titanium silicide active filler and the pyrolytic atmosphere (argon and nitrogen) on the ceramic conversion of polycarbosilane. Pyrolysis atmosphere and concentration of titanium silicide active filler was optimized to produce minimum shrinkage polycarbosilane derived ceramic. Detailed investigation on the phase evolution and surface morphology of the titanium silicide incorporated polycarbosilane derived ceramic under different pyrolysis atmospheres were carried out. From the results, it was concluded that 40 wt% titanium silicide loaded PCS system heat treated under nitrogen atmosphere was found to be the best precursor to obtain a minimum shrinkage ceramic phase with better properties. Therefore, this system offers the opportunity to expedite the rapid fabrication process of ceramic matrix composites, create flawless ceramic coatings, and produce bulk ceramic materials free from shrinkage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据