4.4 Article

High repetition ultrafast laser ablation of graphite and silicon/graphite composite electrodes for lithium-ion batteries

期刊

JOURNAL OF LASER APPLICATIONS
卷 35, 期 4, 页码 -

出版社

AIP Publishing
DOI: 10.2351/7.0001180

关键词

ultrafast laser ablation; high repetition rates; lithium-ion battery; upscaling; laser structuring; ablation characteristics

向作者/读者索取更多资源

This research investigates the laser ablation processing of thick-film composite anodes using high repetition rates and provides detailed analysis of the pattern results. The findings are significant for electrode manufacturing in lithium-ion cells.
Laser structuring can be applied to composite electrodes of lithium-ion cells to enhance wetting and to facilitate the usage of thick-film electrodes by reducing the lithium-ion diffusion overpotential and the tortuosity of the electrodes or the usage of electrodes containing silicon, where additional porosity is required to compensate the volume expansion during lithium de-/insertion. To integrate the additional laser processing step in the well-established electrode manufacturing route, the laser processing speed must be significantly increased to match with the belt speed, which is dependent on the electrode thickness and the type of manufacturing route. Upscaling can be realized by increasing the average laser power, laser intensity, and/or laser repetition rate. Here, an ultrashort pulsed laser source with an average power of 300 W and a pulse duration of 600 fs was applied. For the first time, the presented research provides detailed laser ablation processing data for thick-film composite anodes associated with high repetition rates ranging from 4.9 to 48.8 MHz. The patterning results are compared depending on the widths, depths, aspect ratios, the total appearance regarding debris and cracks, and the volume ablation rate. In high repetition rate laser patterning, the subsequent laser pulses interact with the material vapor plasma generated by the previous laser pulses, resulting in lower ablation depths and higher ablation widths. The increase in laser peak intensity leads to higher achievable ablation depths. Processing strategies are identified for two different ablation scenarios focusing on the pouch cells of a Volkswagen ID.3 and the Tesla 4680 cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据