4.5 Article

Hybrid Assimilation of Snow Cover Improves Land Surface Simulations over Northern China

期刊

JOURNAL OF HYDROMETEOROLOGY
卷 24, 期 10, 页码 1725-1738

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-23-0014.1

关键词

Land surface; Snow cover; Data assimilation; Land surface model

向作者/读者索取更多资源

This study applies a hybrid data assimilation method to combine satellite observations with land surface modeling, effectively reducing simulation errors in snow cover fraction and improving snow depth and soil temperature simulations.
Ensemble data assimilation (DA) is an efficient approach to reduce snow simulation errors by combining observation and land surface modeling. However, there is a small spread between ensemble members of simulated snow pack, which typically occurs for a long time with 100% snow cover fraction (SCF) or snow-free conditions. Here, we apply a hybrid DA method, in which direct insertion (DI) is a supplement of the ensemble square root filter (EnSRF), to assimilate the spaceborne SCF into a land surface model, driven by China Meteorological Administration Land Data Assimilation System high-resolution climate forcings over northern China during the snow season in 2021/22. Compared to the open-loop experiment (without SCF assimilation), the root-mean-square error (RMSE) of SCF is reduced by 6% through the original EnSRF and is even lower (by 14%) in the combined DI and EnSRF (EnSRFDI) experiment. The results reveal the ability of both EnSRF and EnSRFDI to improve the SCF estimation over regions where the snow cover is low, while only EnSRFDI is able to efficiently reduce the RMSE over areas with high SCF. Moreover, the SCF assimilation is also observed to improve the snow depth and soil temperature simulations, with the Kling-Gupta efficiency (KGE) increasing at 60% and 56%-70% stations, respectively, particularly under conditions with near-freezing temperature, in which reliable simulations are typically challenging. Our results demonstrate that the EnSRFDI hybrid method can be applied for the assimilation of spaceborne observational snow cover to improve land surface simulations and snow-related operational products.SIGNIFICANCE STATEMENT: Due to the small spread between the seasonal snowpack of ensemble simulations, ensemble snow cover fraction (SCF) data assimilation (DA) proves to be ineffective. Therefore, we apply a hybrid method that combines the direct insertion (DI) and ensemble square root filter (EnSRF) to assimilate the spaceborne SCF into a land surface model (LSM) driven by high-resolution climate forcings. Our results reveal the applicability of the EnSRFDI to further improve snow cover simulations over regions with high SCF. Furthermore, the DA experiments were validated through a large number of in situ observations from the China Meteorological Administration. The uncertainties of snow depth and soil temperature simulations are also slightly reduced by the SCF DAs, particularly over regions with a poor LSM performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据