4.7 Article

Silencing of PpNRAMP5 improves manganese toxicity tolerance in peach (Prunus persica) seedlings

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 454, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131442

关键词

Enzymatic antioxidants; Fruit crop; Heavy metal toxicity; Metal transporter; Photosynthesis; Reactive oxygen species

向作者/读者索取更多资源

The NRAMP gene family plays a crucial role in metal ion transport in plants. This study identified and characterized five NRAMP genes in Prunus persica, with PpNRAMP5 being greatly induced by manganese toxicity. Suppression of PpNRAMP5 reduces manganese uptake and transportation, alleviating oxidative stress and improving photosynthesis in peach plants.
The natural resistance-associated macrophage protein (NRAMP) gene family assists in the transport of metal ions in plants. However, the role and underlying physiological mechanism of NRAMP genes under heavy metal toxicity in perennial trees remain to be elucidated. In Prunus persica, five NRAMP family genes were identified and named according to their predicted phylogenetic relationships. The expression profiling analysis indicated that PpNRAMPs were significantly induced by excess manganese (Mn), iron, zinc, and cadmium treatments, suggesting their potential role in heavy metal uptake and transportation. Notably, the expression of PpNRAMP5 was tremendously increased under Mn toxicity stress. Heterologous expression of PpNRAMP5 in yeast cells also confirmed Mn transport. Suppression of PpNRAMP5 through virus-induced gene silencing enhanced Mn toler-ance, which was compromised when PpNRAMP5 was overexpressed in peach. The silencing of PpNRAMP5 mitigated Mn toxicity by dramatically reducing Mn contents in roots, and effectively reduced the chlorophyll degradation and improved the photosynthetic apparatus under Mn toxicity stress. Therefore, PpNRAMP5- silenced plants were less damaged by oxidative stress, as signified by lowered H2O2 contents and O-2(circle-) staining intensity, also altered the reactive oxygen species (ROS) homeostasis by activating enzymatic antioxidants. Consistently, these physiological changes showed an opposite trend in the PpNRAMP5-overexpressed peach plants. Altogether, our findings suggest that downregulation of PpNRAMP5 markedly reduces the uptake and transportation of Mn, thus activating enzymatic antioxidants to strengthen ROS scavenging capacity and photosynthesis activity, thereby mitigating Mn toxicity in peach plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据