4.7 Review

Impact of chemical pollution on threatened marine mammals: A systematic review

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 459, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.132203

关键词

Pollution-effect relationships; Persistent organic pollutants; Metals; Pesticides; Mechanistic toxicology; Conservation

向作者/读者索取更多资源

This systematic review examines the published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red listed marine mammal species. The findings reveal a lower availability of exposure-effect data for higher extinction risk species, highlighting the need for more research. The most studied pollutants are POPs, metals, and pesticides.
Marine mammals, due to their long life span, key position in the food web, and large lipid deposits, often face significant health risks from accumulating contaminants. This systematic review examines published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red listed marine mammal species. Thereby, identifying gaps in literature across different extinction risk categories, spatial distribution and climatic zones of studied habitats, commonly used methodologies, researched pollutants, and mechanisms from cellular to population levels. Our findings reveal a lower availability of exposure-effect data for higher extinction risk species (critically endangered 16%, endangered 15%, vulnerable 66%), highlighting the need for more research. For many threatened species in the Southern Hemisphere pollutant-effect relationships are not established. Non-destructively sampled tissues, like blood or skin, are commonly measured for exposure assessment. The most studied pollutants are POPs (31%), metals (30%), and pesticides (17%). Research on mixture toxicity is scarce while pollution-effect studies primarily focus on molecular and cellular levels. Bridging the gap between molecular data and higher-level effects is crucial, with computational approaches offering a high potential through in vitro to in vivo extrapolation using (toxico-)kinetic modelling. This could aid in population-level risk assessment for threatened marine mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据