4.7 Article

Unexpectedly high nitrate levels in a pristine forest river on the Southeastern Qinghai-Tibet Plateau

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 458, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.132047

关键词

Nitrate; Isotope; Source; Background; Qinghai-Tibet Plateau

向作者/读者索取更多资源

This study integrated river isotopes, 15N pairing experiments, and qPCR to reveal the processes driving the high NO3- levels in a nearly pristine forest river on the Qinghai-Tibet Plateau. The river isotopes suggested that, at the catchment scale, NO3- removal was prevalent in summer, but weak in winter. The release of soil NO3- to the river was transport-limited in both seasons, which resulted in the consistently high NO3- levels.
River nitrate (NO3-) pollution is a global environmental issue. Recently, high NO3- levels in some pristine or minimally-disturbed rivers were reported, but their drivers remain unclear. This study integrated river isotopes (& delta;18O/& delta;15N-NO3- and & delta;D/18O-H2O), 15N pairing experiments, and qPCR to reveal the processes driving the high NO3- levels in a nearly pristine forest river on the Qinghai-Tibet Plateau. The river isotopes suggested that, at the catchment scale, NO3- removal was prevalent in summer, but weak in winter. The pristine forest soils contributed more than 90 % of the riverine NO3-, indicating the high NO3- backgrounds. The release of soil NO3- to the river was transport-limited in both seasons, i.e., the NO3- production/stock in the soils exceeded the capacity of hydrological NO3- leaching. In summer, this regime and the NO3--plentiful conditions in the soils associated with the strong NO3- nitrification led to the high riverine NO3- levels. While the in-soil nitrification was weak in winter, the leaching of legacy NO3- resulted in the consistently high NO3- levels. This study provides insights into the reasons for high NO3- levels in pristine or minimally-disturbed rivers worldwide and highlights the necessity to consider NO3- backgrounds when evaluating anthropogenic NO3- pollution in rivers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据