4.3 Article

Kv12-encoded K+ channels drive the day-night switch in the repetitive firing rates of SCN neurons

期刊

JOURNAL OF GENERAL PHYSIOLOGY
卷 155, 期 9, 页码 -

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.202213310

关键词

-

向作者/读者索取更多资源

Considerable evidence suggests that subthreshold potassium (K+) channels play a regulatory role in the day-night rhythms of neurons in the suprachiasmatic nucleus (SCN). This study identifies Kv12.1 and Kv12.2-encoded K+ channels as important regulators of the daily oscillations in the firing rates of SCN neurons.
Considerable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K+) channels regulate daily oscillations in the spontaneous firing rates of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K+ conductance(s) driving these daily rhythms in the repetitive firing rates of SCN neurons, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K+ channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1(-/-)) or Kcnh3 (Kv12.2(-/-)) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1(-/-) and Kv12.2(-/-) than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1(-/-), Kv12.2(-/-), and WT SCN neurons, and the day-night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1(-/-) and Kv12.2(-/-) SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, the pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of the nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1(-/-), Kv12.2(-/-), and Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据