4.6 Article

The effect of emulsifier type and oil fraction on Salmonella Typhimurium growth and thermal inactivation in oil-in-water emulsion

期刊

JOURNAL OF FOOD SCIENCE
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1111/1750-3841.16789

关键词

emulsion; Salmonella

向作者/读者索取更多资源

High water activity oil-in-water emulsions promote the growth of Salmonella Typhimurium, and the effects of emulsifier type and oil content on growth and inactivation differ. Emulsions with high oil content prolonged the lag phase of bacterial growth, while emulsifier type had no significant effect. During thermal inactivation, certain emulsifiers offered protection, but high oil content did not provide additional protection.
High water activity oil-in-water emulsions can promote survival and growth of Salmonella Typhimurium. Nevertheless, the precise effect of emulsifier type and oil content on bacterial growth and inactivation is not fully understood. Here, emulsions were prepared using different emulsifiers (Tween 20, Tween 80, and Triton X-100) and different oil fractions (20%, 40%, and 60% (v/v)). TSB (control), emulsifier solutions, and emulsions were inoculated with S. Typhimurium. Bacterial growth rate was measured at 7, 22, and 37degree celsius, whereas thermal inactivation was performed at 55degree celsius. Growth and inactivation data was fitted into Logistic and Weibull models, respectively. At an incubation temperature of 37degree celsius, the presence of high amount of oil (60%) in Tween 20 and Triton X stabilized emulsions extended the lag phase (5.83 +/- 2.20 and 9.43 +/- 1.07 h, respectively, compared to 2.28 +/- 1.54 h for TSB, p < 0.05), whereas individual emulsifiers had no effect on growth behavior compared to TSB. This effect was also prevalent but attenuated at 22degree celsius, whereas no growth was observed at 7degree celsius. In thermal inactivation, we observed protective effect in Tween 80 and Triton X-100 solutions, where time required for five-log reduction was 1914.70 +/- 706.35 min and 795.34 +/- 420.09 min, respectively, compared to 203.89 +/- 10.18 min for TSB (p < 0.05). Interestingly, the presence of high amount of oil did not offer protective effect during thermal inactivation. We hypothesize that oleic acid in Tween 80 and lower hydrophobicity value of Triton X-100 help maintain membrane integrity and improve the resistance of bacteria to heat inactivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据