4.7 Article

Coupling SWAT and DPSIR models for groundwater management in Mediterranean catchments

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 344, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.118543

关键词

SWAT; Water balance; Climate model projections; MODIS; DPSIR

向作者/读者索取更多资源

Groundwater is a crucial natural resource that plays a significant role in human and environmental health as well as the economy. The management of subsurface storage is essential in meeting the diverse demands of humans and ecosystems. The study focuses on quantifying groundwater recharge using spatial-temporal analysis and modelling, and highlights the importance of considering interactions between surface runoff and groundwater recharge.
Groundwater is an essential natural resource and has a significant role in human and environmental health as well as in the economy. Management of subsurface storage remains an important option to meet the combined demands of humans and ecosystems. The increasing need to find multi-purpose solutions to address water scarcity is a global challenge. Thus, the interactions leading to surface runoff and groundwater recharge have received particular attention over the last decades. Additionally, new methods are developed to incorporate the spatial-temporal variation of recharge in groundwater modeling. In this study, groundwater recharge was spatiotemporally quantified using the Soil and Water Assessment Tool (SWAT) in the Upper Volturno-Calore hydrological basin in Italy and the results were compared with other two basins in Greece (Anthemountas and Mouriki). SWAT model was applied in actual and future projections (2022-2040) using the Representative Concentration Pathway (RCP) 4.5 emissions scenario to evaluate changes in precipitation and assess the future hydrologic conditions, along with, the Driving Force-Pressure-State-Impact-Response (DPSIR) framework that was applied in all the basins as a low-cost analysis of integrated physical, social, natural, and economic factors. According to the results, no significant variations in runoff are predicted in the Upper Volturno-Calore basin for the period 2020-2040 while the potential evapotranspiration percentage varies from 50.1% to 74.3% and infiltration around 5%. The limited primary data constitutes the main pressure in all sites and exaggerates the uncertainty of future projections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据