4.7 Review

Effects of micro(nano)plastics on soil nutrient cycling: State of the knowledge

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 344, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.118437

关键词

Microplastics; Nanoplastics; Soil nutrients; Nutrient transformation; Global change

向作者/读者索取更多资源

The effects of micro(nano)plastics (MNPs) on soil nutrient cycling, particularly carbon (C), nitrogen (N), and phosphorus (P), are reviewed. MNPs can alter soil nutrient cycling by affecting soil nutrient availability, enzyme activities, microbial communities, and ecological functions. The effects of MNPs depend on their characteristics, chemical additives, soil conditions, and biota. Multi-scale experiments using environmentally relevant MNPs are needed to further understand the impacts of MNPs on soil nutrients.
The ecological impacts of micro(nano)plastics (MNPs) have attracted attention worldwide because of their global occurrence, persistence, and environmental risks. Increasing evidence shows that MNPs can affect soil nutrient cycling, but the latest advances on this topic have not systematically reviewed. Here, we aim to present the state of knowledge about the effects of MNPs on soil nutrient cycling, particularly of C, N, and P. Using the latest data, the present review mainly focuses on three aspects, including (1) the effects and underlying mechanisms of MNPs on soil nutrient cycling, particularly of C, N and P, (2) the factors influencing the effects of MNPs on soil nutrient cycling, and (3) the knowledge gaps and future directions. We conclude that MNPs can alter soil nutrient cycling via mediating soil nutrient availability, soil enzyme activities, functional microbial communities, and their potential ecological functions. Furthermore, the effects of MNPs vary with MNPs characteristics (i.e., polymeric type, size, dosage, and shape), chemical additives, soil physicochemical conditions, and soil biota. Considering the complexity of MNP-soil interactions, multi-scale experiments using environmental relevant MNPs are required to shed light on the effects of MNPs on soil nutrients. By learning how MNPs influence soil nutrients cycles, this review can guide policy and management decisions to safeguard soil health and ensure sustainable agriculture and land use practices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据