4.7 Article

Understanding the natural expansion of white mangrove (Laguncularia racemosa) in an ephemeral inlet based on geomorphological analysis and remote sensing data

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 338, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.117820

关键词

DJI Phantom; Google earth engine; Water level; Beach profile; Mexico

向作者/读者索取更多资源

This study used multiple satellite and drone-based imagery, as well as biophysical variables, to monitor the natural recruitment and expansion of Laguncularia racemosa mangroves on mudflats within an ephemeral inlet in Mexico. The study found that when the river mouth closes, sediment accumulation creates favorable conditions for Laguncularia racemosa propagules to establish and grow under minimal water level variability and low salinity. These findings contribute to the understanding of natural Laguncularia racemosa recruitment in highly dynamic systems.
The interactions between local tides and river discharges are crucial in the processes related to the recruitment of mangrove propagules in estuarine systems. This investigation aimed to determine the causes of the recent natural recruitment and expansion of Laguncularia racemosa in mudflats within an ephemeral inlet in Mexico. We con-ducted a fluvial and coastal geomorphology assessment with spaceborne and UAV-based images. We deployed and recorded continuous data loggers in the estuarine system to assess water level and salinity. Depending on the available data, we used a combination of cloud-computing Google Earth Engine, UAV-Digital Surface Models, LiDAR, Google Earth images, and biophysical variables to monitor mangrove forests from 2005 to 2022. When the inlet is open, the estuarine system presents a full tidal range (similar to 1-1.5 m) with a strong salinity gradient (0-35 mS/cm), in contrast to the strong freshwater influence and minimal water level variability (<10 cm) that prevails for three months when the inlet is closed. Once the mouth of the river closes, there is considerable sediment accumulation, creating mudflat areas adjacent to the mangrove forests where Laguncularia racemosa propagules begin to establish under minimal water level variability and oligohaline conditions. After 16 years, the new forest expanded by 12.3 ha, presenting a very high density (10000 stems/ha), a considerable basal area (54-63 m(2)/ha), and a maximum canopy height of 15.8 m, which largely surpasses that of other semiarid Laguncularia racemosa forests within permanent open-inlet systems or even in ephemeral inlets with different hydrological conditions. Our study will help to understand the causes of natural Laguncularia racemosa recruitment in extremely dynamic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据