4.7 Article

Reservoir-derived subsidies provide a potential management opportunity for novel river ecosystems

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 345, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.118852

关键词

Zooplankton; Reservoir subsidies; Nitrogen; Phosphate; Salmon; Selective withdrawal

向作者/读者索取更多资源

Aquatic ecosystems worldwide are undergoing irreversible changes, requiring new and innovative management strategies to enhance ecosystem function and sustainability. This study examines the impacts of dams on river ecosystems and the potential benefits of environmental flows and selective withdrawal infrastructure on improving habitat for native species. The results demonstrate that reservoirs can serve as important sources of nutrient and food web subsidies, highlighting the value of selective withdrawal infrastructure in controlling downstream ecosystem productivity.
Aquatic ecosystems world-wide are being irreversibly altered, suggesting that new and innovative management strategies are necessary to improve ecosystem function and sustainability. In river ecosystems degraded by dams environmental flows and selective withdrawal (SWD) infrastructure have been used to improve habitat for native species. Yet, few studies have quantified nutrient and food web export subsidies from upstream reservoirs, despite their potential to subsidize downstream riverine food webs. We sampled nutrient, phytoplankton, and zooplankton concentrations in outflows from the Shasta-Keswick reservoir complex in Northern California over a 12-month period to understand how SWD operation and internal reservoir conditions interact to influence subsidies to the Sacramento River. We found that nutrients, phytoplankton, and zooplankton were continuously exported from Shasta Reservoir to the Sacramento River and that gate operations at Shasta Dam were important in controlling exports. Further, our results indicate that gate operations and water-export depth strongly correlated with zooplankton community exports, whereas internal reservoir conditions (mixing and residence time) controlled concentrations of exported zooplankton biomass and chlorophyll a. These results demonstrate that reservoirs can be an important source of nutrient and food web subsidies and that selective withdrawal infrastructure may provide a valuable management tool to control ecosystem-level productivity downstream of dams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据