4.7 Article

Evaluation of the recycling potential of obsolete mobile phones through secondary material resources identification: A comprehensive characterization study

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 345, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.118550

关键词

waste mobile phones; Material recovery; Recycling potential; Urban mining; And circular economy

向作者/读者索取更多资源

The study focuses on the recycling-oriented characterization of waste mobile phones (WMPs) for resource recovery. The results show that PCBs have the highest economic recovery potential among the components of WMPs, with an estimated revenue generation of more than $50,000 per ton of waste PCBs. Copper, Sn, and Ni demonstrate high recovery potential, while Au, Pd, and Ag exhibit high economic value among precious metals. The study suggests that WMPs can serve as a promising source for sustainable recovery of rare and valuable metals, aiding policymakers in designing effective e-waste management strategies.
The growing concern over the management of e-wastes has generated an interest in the recovery of resources from these wastes under the concept of urban mining and circular economy. However, in the absence of accurate knowledge of the physico-chemical compositional structure of these wastes makes the recycling process difficult. Thus, the present study conducted a recycling-oriented characterization of waste mobile phones (WMPs) for the identification of secondary materials and estimated their recycling potential. The characterization was performed using ICP-OES and FTIR techniques after dismantling WMPs for the determination of elemental composition and the polymeric fractions respectively. Dismantling of the WMPs revealed that enclosures, batteries, display modules, and PCBs consist of 35.33 wt%, 28.9 wt%, 19.44 wt%, and 16.31 wt% respectively. Of these components, PCBs constitute the highest economic recovery potential with an estimated potential revenue generation of more than 50,000 US $ per ton of waste PCBs. Copper showed the highest recovery potential (234.39 tons/year) with an economic value of approximately 3317 US $/ton of WPCBs followed by Sn (27.37 tons/year) and Ni (24.64 tons/year). Among different precious metals, Au was found to have the highest percentage of economic value (76.22%) followed by Pd (8.16%) and Ag (3.13%). The display modules and enclosures were found to have relatively lower contributions than WPCBs in the overall recycling potential due to lower metal contents and mixed polymeric fractions. The findings in the study indicate that WMPs could serve as a promising new source for sustainable secondary mining of rare and valuable metals. Further, the study will help the policymakers in designing effective e-waste management strategies through the promotion of sustainable recovery of materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据