4.4 Article

Bifurcation Analysis of Driver's Characteristics in Car-Following Model

出版社

ASME
DOI: 10.1115/1.4063338

关键词

-

向作者/读者索取更多资源

According to traffic flow theory, driver behavior significantly affects traffic stability. This research proposes a novel car-following model that considers both the driver's cautious and aggressive instincts. Numerical simulations and theoretical analyses show that the aspects of the enhanced model related to driver characteristics have a major impact on traffic flow stability.
According to traffic flow theory, traffic is affected not only by road conditions such as bottlenecks, the environment, interruptions, and so on but also by the driver's behavior. To control and manage increasingly complex traffic networks, it also becomes necessary to study the effects of driver characteristics significantly. In this research, a novel car-following model is proposed which considers both the driver's cautious and aggressive instincts for optimal and relative velocity integrals. To analyze the stability of the new model, a small perturbation method was used. Further, the modified Korteweg-de-Vries equations were established with the help of a reductive perturbation method. In bifurcation analysis, we examine the existence and stability of Hopf bifurcation in various systems. This helps to gain deeper insight into the behavior of these dynamical systems and can be used to develop more efficient control strategies. Numerical simulations and theoretical analyses both show that the aspects of the enhanced model related to driver characteristics have a major affect on traffic flow stability. Additionally, the model can adeptly handle traffic congestion and quickly return to its normal state if any disruption occurs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据