4.7 Article

Bright photon upconversion in LiYbF4:Tm3+@LiYF4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 649, 期 -, 页码 49-57

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.06.034

关键词

Singlet oxygen; Reactive oxygen species; Covid-19 diagnosis

向作者/读者索取更多资源

This study presents the synthesis, properties, and applications of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles. These nanoparticles exhibit intense emission in the ultraviolet range under 975 nm excitation, making them suitable for disease prevention and treatment in biomedicine.
Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据