4.7 Article

Defect engineering induces Mo-regulated Co9Se8/FeNiSe heterostructures with selenium vacancy for enhanced electrocatalytic overall water splitting in alkaline

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 655, 期 -, 页码 296-306

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.11.010

关键词

Electrocatalysts; Vacancy defects; Heterostructure; Overall water splitting

向作者/读者索取更多资源

A molybdenum-regulated self-supporting electrode material with rich vacancy defects has been successfully synthesized and shows exceptional catalytic activities and stability for electrocatalytic overall water splitting. This study provides a new perspective for the design and synthesis of non-precious metal bifunctional electrocatalysts.
The pursuit of cost-effective catalysts for electrocatalytic overall water splitting continues to present a significant challenge in the field. A molybdenum (Mo)-regulated Co9Se8/FeNiSe self-supporting electrode material with rich vacancy defects has been prepared by hydrothermal reaction. Doping of Mo atoms not only can form rich selenium vacancy defects to enrich the inherent activity of the catalyst, but also expose more active sites. The intrinsic electronic architecture of the interface catalysis is regulated and optimized through the introduction of heteroatom Mo, resulting in the exceptional catalytic activities of the Mo-Co9Se8/FeNiSe heterostructure. Additionally, the Faraday efficiency of hydrogen (H-2) and oxygen (O-2) production approaches 100 %. The voltage required for the water-splitting system is only 1.58 V (10 mA cm(-2)), and 100 h stability test at 100 mA cm(-2) demonstrates no decay. This work presents a new perspective for the reasonable design and synthesis of non-precious metal selenide-based bifunctional electrocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据