4.7 Article

Crosslinking alginate at water-in-water Pickering emulsions interface to control the interface structure and enhance the stress resistance of the encapsulated probiotics

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 655, 期 -, 页码 653-663

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.10.159

关键词

Water-in-water Pickering emulsion; Cellulose particles; Interface modification; Probiotics

向作者/读者索取更多资源

This study aimed to improve the microstructure and rheological properties of W/W Pickering emulsions by crosslinking sodium alginate at the water-water interface, thereby enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion.
Hypothesis: The strategies for stabilizing water-in-water (W/W) emulsions include the adsorption of solid particles at the water-water interface and the generation of interfacial films. We hypothesize that if sodium alginate is crosslinked at the water-water interface of W/W Pickering emulsions, the microstructure and rheological properties of the emulsions could be improved, thus enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion.Experiments: The W/W Pickering emulsions comprised a dispersed maltodextrin (MD) phase in a continuous hydroxypropyl methylcellulose (HPMC) phase. The crosslinking W/W Pickering emulsion with fine-tuned internal structure was designed by leaching the CaCO3 particles packed in the dispersed phase to release Ca2+ crosslinked with sodium alginate.Findings: Confocal laser scanning microscope results revealed sodium alginate crosslinked with Ca2+ at the W/W interface. The rheological results of the crosslinking W/W Pickering emulsions suggested that the loss modulus (G '') was higher than the energy storage modulus (G'). The microstructure indicated that the emulsions formed a dense porous network structure after crosslinking conditions. The viable cell count of Lactobacillus helveticus CICC 22536 (LC) encapsulated in crosslinking W/W Pickering emulsion after simulated gastrointestinal digestion was 7.563 x 107 CFU/mL, which was three orders of magnitude higher than that of naked cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据