4.7 Article

Synthesis of PMIA/MIL-101(Cr) composite separators with high Li plus transmission for boosting safety and electrochemical performance of lithium-ion batteries

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 647, 期 -, 页码 12-22

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.04.177

关键词

PMIA; MIL-101(Cr); Chemical complexation; Facilitating Li plus transfer; Electrochemical properties

向作者/读者索取更多资源

In this study, a composite separator consisting of PMIA and MIL-101(Cr) was designed and fabricated. The composite separator showed improved lithium-ion transport and enhanced electrochemical performance due to the tunability and chemical complexation of MIL-101(Cr).
Energy storage devices require separators with sufficient lithium-ion transfer and restrained lithium dendrite growth. Herein, PMIA separators tuned using MIL-101(Cr) (PMIA/MIL-101) were designed and fabricated by a one-step casting process. At 150 C, the Cr3+ in the MIL-101(Cr) framework sheds two water molecules to form an active metal site that complexes with PF6- in the electrolyte on the solid/liquid interface, leading to improved Li+ transport. The Li+ transference number of the PMIA/MIL-101 composite separator was found to be 0.65, which is about 3 times higher than that of the pure PMIA separator (0.23). Additionally, MIL-101(Cr) can modulate the pore size and porosity of the PMIA separator, while its porous structure also functions as additional storage space for the electrolyte, enhancing the electrochemical performance of the PMIA separator. After 50 charge/discharge cycles, batteries assembled using the PMIA/MIL-101 composite separator and the PMIA separator presented a discharge specific capacity of 120.4 and 108.6 mAh/g, respectively. The battery assembled using PMIA/MIL-101 composite separator significantly outperformed both the batteries assembled from pure PMIA and commercial PP separators in terms of cycling performance at 2 C, displaying a discharge specific capacity of 1.5 times that of the battery assembled from PP separators. The chemical complexation of Cr3+ and PF6- plays a critical role to improve the electrochemical performance of the PMIA/MIL-101 composite separator. The tunability and enhanced properties of the PMIA/MIL-101 composite separator make it a promising candidate for use in energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据