4.7 Article

Sustainable production of hydrogen, pyridine and biodiesel from waste-to-chemicals valorization plant: Energy, exergy and CO2-cycle analysis

期刊

JOURNAL OF CLEANER PRODUCTION
卷 425, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2023.139051

关键词

Waste-to-chemical; Process simulation; Environmental; Biodiesel; Pyridine.

向作者/读者索取更多资源

This study focuses on simulating a waste-to-chemicals plant that converts municipal solid waste into hydrogen, biodiesel, and pyridine. The analysis evaluates different scenarios in terms of technical and economic aspects, including material flows, costs, emissions, and energy efficiency. The results show that by valorizing waste and reducing landfill waste, significant amounts of valuable products can be produced while limiting CO2 emissions.
This study deals with the simulation of waste-to-chemicals plant for the conversion of municipal solid waste to hydrogen, biodiesel and pyridine. The study analyses a Waste to Chemical plant, in order to evaluate the future scenarios of the integrated management of municipal waste from a technical and economic point of view and compare them, both in terms of material flows and related costs. In a first phase, the characteristics of the simulation model created with the help of the Aspen Plus software are analysed. Subsequently, with the help of a calculation model, the operating costs, emissions and energy and exergy efficiency are evaluated for the two identified scenarios.Starting from about 3000 t/h of waste, as a main result, about 8.4 t/h of pyridine and 300 t/h of biodiesel are produced and about 7.94 t/h of H2 as a by-product. The main purpose of the design cycle is to reduce the amount of waste to landfill, valorising it and limiting CO2 emitted in the atmosphere at the same time.Two system configurations are considered to maximize the reuse of all waste streams. In particular, the comparison was made between two scenarios: in the first the stream separated by extraction is considered a waste for the plant, while in the second scenario, this stream is sent to a fermentation section to obtain an excess bioethanol stream, which represents another product with high added value. The treatment of the stream separated from the extraction in the second scenario allows to obtain an additional stream of bioethanol in addition to the target products.A complete energy, exergy, environmental and economic analysis of the simulated plant have been carried out. The work shown that in the second case the waste exergy is dramatically reduced, leading to a raise of exergy efficiency from 30.2% up to 84.9%. While, from the environmental point of view both scenarios have low CO2 emissions, 0.52 kgCO2/kg products and 0.87 kgCO2/kg products respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据