4.7 Article

Developing sustainable strategies by LID optimization in response to annual climate change impacts

期刊

JOURNAL OF CLEANER PRODUCTION
卷 416, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2023.137931

关键词

Annual impacts; Climate change; Long ashton research station weather generator; (LARS-WG); Low impact developments (LIDs); Non-dominated sorting genetic algorithm-II; (NSGA-II); Storm water management model (SWMM)

向作者/读者索取更多资源

Designing urban runoff drainage systems is crucial for managing floods in impermeable areas. This research proposes a method to analyze the impact of climate change on optimal low impact developments (LIDs) in urban drainage systems. The study uses a simulation-optimization model that combines a Storm Water Management Model and a genetic algorithm to minimize costs and improve flood control. The results show that the developed LIDs effectively reduce flooding and pollutant loads.
Designing urban runoff drainage systems is prominent in effectively managing floods due to increasing impermeable regions worldwide. However, although urban runoff drainage systems are configured mainly based on rainfall analysis, climate change influences their hydrological properties substantially. This research introduces an innovative methodology to analyze climate variations on optimal low impact developments (LIDs) of urban drainage systems in historical periods based on annual impacts (AIs) in projection periods considering uncertainties assessments. First, Storm Water Management Model (SWMM) is employed for simulating the process of rainfall-runoff considering quality and quantity analyses. This simulation model is coupled with a nondominated genetic algorithm- II (NSGA-II) optimization algorithm to minimize the cost of LIDs, flood volume, and pollutant load. Then, future runoff and daily rainfall are projected on a yearly basis, including maximum, minimum, and median rainfall, to identify how climate change affects catchment properties. These projections and an ensemble model are obtained based on the Long Ashton Research Station Weather Generator (LARS-WG), which considers uncertainties. After that, the projected daily precipitation is fragmented into hourly segments utilizing the change factor approach (CFA). Finally, the ideal optimum type, size, and placement of the chosen LIDs are determined using the presented simulation-optimization (SO) model. To prove the effectiveness and appropriateness of the presented framework, it is implemented in a real-world study area in Darabad catchment, Tehran, Iran. Results indicate that the developed optimal LIDs are well-designed and sufficient in both the historical and projection periods. The findings also depict that with the current LIDs established for the historical period, the flooding volume and summation of total suspended solid (TSS) and total Nitrogen (TN) removals are decreased by 55.96% and 60.2% compared to when LIDs are not adopted. In addition, employing the developed LIDs based on an ensemble model results in the runoff volume and pollutants removal decline of up to 31.39% and 46.9%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据