4.7 Article

Magnetic Field Effects in Triplet-Triplet Annihilation Upconversion: Revisiting Atkins and Evans' Theory

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 19, 期 21, 页码 7816-7824

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.3c00927

关键词

-

向作者/读者索取更多资源

This paper focuses on the effects of magnetic fields on spin-dependent interactions in chemiluminescent fluid solutions. The authors revisit and extend the theory proposed by Atkins and Evans, providing corrections and expanding the theory to triplet and quintet multiplicity states. The findings have significant implications for photochemical upconversion and the study of spin-mediated upconversion and downconversion processes.
In their seminal description of magnetic field effects on chemiluminescent fluid solutions, Atkins and Evans considered the spin-dependent interactions between two triplets, incorporating the effects of the diffusion of the molecules in the liquid phase. Their results, crucial for the advancement of photochemical upconversion, have received renewed attention due to the increasing interest in triplet-triplet annihilation for photovoltaic and optoelectronic applications. Here we revisit their approach, using a modern formulation of open quantum system dynamics and extend their results. We provide corrections to the theory of the magnetic field response of the fluorescent triplet pair state with singlet multiplicity. These corrections are timely, as improvements in the precision and range of available experimental methods are supported by the determination of quantitatively accurate rotational and interaction model parameters. We then extend Atkins and Evans' theory to obtain the magnetic field response of triplet pair states with triplet and quintet multiplicity. Although these states are not optically active, transitions between them are becoming imperative to study the working mechanism of spin-mediated upconversion and downconversion processes, thanks to advances in electron spin resonance and time-resolved transient absorption spectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据