4.7 Article

Equilibrium molecular dynamics evaluation of the solid-liquid friction coefficient: Role of timescales

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 159, 期 2, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0155628

关键词

-

向作者/读者索取更多资源

Solid-liquid friction is essential in nanofluidic systems. This study presents a new method to evaluate the friction coefficient by fitting the Green-Kubo integral of the solid-liquid shear force autocorrelation, which is easy to implement and applicable to various interfaces without assumptions about the time dependence of the friction kernel.
Solid-liquid friction plays a key role in nanofluidic systems. Following the pioneering work of Bocquet and Barrat, who proposed to extract the friction coefficient (FC) from the plateau of the Green-Kubo (GK) integral of the solid-liquid shear force autocorrelation, the so-called plateau problem has been identified when applying the method to finite-sized molecular dynamics simulations, e.g., with a liquid confined between parallel solid walls. A variety of approaches have been developed to overcome this problem. Here, we propose another method that is easy to implement, makes no assumptions about the time dependence of the friction kernel, does not require the hydrodynamic system width as an input, and is applicable to a wide range of interfaces. In this method, the FC is evaluated by fitting the GK integral for the timescale range where it slowly decays with time. The fitting function was derived based on an analytical solution of the hydrodynamics equations [Oga et al., Phys. Rev. Res. 3, L032019 (2021)], assuming that the timescales related to the friction kernel and the bulk viscous dissipation can be separated. By comparing the results with those of other GK-based methods and non-equilibrium molecular dynamics, we show that the FC is extracted with excellent accuracy by the present method, even in wettability regimes where other GK-based methods suffer from the plateau problem. Finally, the method is also applicable to grooved solid walls, where the GK integral displays complex behavior at short times.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据