4.7 Article

Applications and Advances in Machine Learning Force Fields

向作者/读者索取更多资源

Force fields are crucial in molecular simulations and have applications in various fields. Machine learning force fields, constructed using machine learning techniques, offer advantages such as high accuracy and low cost compared to traditional force fields.
Force fields (FFs) form the basis of molecular simulations and have significant implications in diverse fields such as materials science, chemistry, physics, and biology. A suitable FF is required to accurately describe system properties. However, an off-the-shelf FF may not be suitable for certain specialized systems, and researchers often need to tailor the FF that fits specific requirements. Before applying machine learning (ML) techniques to construct FFs, the mainstream FFs were primarily based on first-principles force fields (FPFF) and empirical FFs. However, the drawbacks of FPFF and empirical FFs are high cost and low accuracy, respectively, so there is a growing interest in using ML as an effective and precise tool for reconciling this trade-off in developing FFs. In this review, we introduce the fundamental principles of ML and FFs in the context of machine learning force fields (MLFF). We also discuss the advantages and applications of MLFF compared to traditional FFs, as well as the MLFF toolkits widely employed in numerous applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据