4.7 Article

Design, one-pot synthesis, computational and biological evaluation of diaryl benzimidazole derivatives as MEK inhibitors

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2265486

关键词

MEK; DFG; hydrophobic; catalytic loop; molecular dynamics; anticancer

向作者/读者索取更多资源

MEK mutations are common in various types of cancer, and the design of compounds with structural resemblance to FDA-approved MEK inhibitors has shown promise. Through chemical synthesis and computational studies, compound S15 was found to be the most potent against cancer cells, while compounds S1 and S5 were comparable to the standard drug trametinib.
MEK mutations are more common in various human malignancies, such as pancreatic cancer (70-90%), mock melanoma (50%), liver cancer (20-40%), colorectal cancer (25-35%), melanoma (15-20%), non-small cell lung cancer (10-20%) and basal breast cancer (1-5%). Considering the significance of MEK mutations in diverse cancer types, the rational design of the proposed compounds relies on the structural resemblance to FDA-approved MEK inhibitors like selumetinib and binimetinib. The compound under design features distinct substitutions at the benzimidazole moiety, specifically at positions 2 and 3, akin to the FDA-approved drugs, albeit differing in positions 5 and 6. Subsequent structural refinement was guided by key elements including the DFG motif, hydrophobic pocket and catalytic loop of the MEK protein. A set of 15 diverse diaryl benzimidazole derivatives (S1-S15) were synthesized via a one-pot approach and characterized through spectroscopic techniques, including MASS, IR, H-1 NMR and C-13 NMR. In vitro anticancer activities of all the synthesized compounds were evaluated against four cancer cell lines, A375, HT -29, A431 and HFF, along with the standard drug trametinib. Molecular docking was performed for all synthesized compounds (S1-15), followed by 950 ns molecular dynamics simulation studies for the promising compounds S1, S5 and S15. The stability of these complexes was assessed by calculating the root-mean-square deviation, solvent accessible surface area and gyration radius relative to their parent structures. Additionally, free energy of binding calculations were performed. Based on the biological and computational results, S15 was the most potent compound and S1 and S5 are comparable to the standard drug trametinib. [Graphical Abstract]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据