4.7 Article

Synthesis, structural and X-ray analysis evaluations and computational studies of newly tetrahydroisoquinoline derivatives as potent against microsomal prostaglandin E synthase 1

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2272745

关键词

Tetrahydroisoquinoline; crystal structure; DFT calculation; nonlinear optical properties; molecular docking; ADMET

向作者/读者索取更多资源

In this study, two new tetrahydroisoquinoline derivatives were synthesized and characterized. The compounds showed significant biological activity and optical properties, and exhibited strong binding affinity with microsomal prostaglandin E synthase 1 (MPGES1).
Tetrahydroisoquinolines (THIQs) are a significant class within the broad range of natural compounds known as isoquinoline alkaloids. Natural and manmade drugs based on THIQ have a variety of biological effects that protect against different infectious pathogens and neurological diseases. In this study, two new THIQ derivatives were synthesized and characterized using by X-ray crystallographic analysis. The performed Hirshfeld analysis shows the intermolecular interactions and reactive sites of compounds. The 2D fingerprints reveal dominants H center dot center dot center dot C interactions up to 8.8% in 3a while 43% H center dot center dot center dot H elemental interactions are observed in compound 3b. In studied compound 3a, the repulsion energies (k-rep) dominate the other energies where the highest amount of 63.8 kJ/mol is obtained whereas 3b has a significant contribution from E-dis to the total energy of the molecule from the energy framework study. Moreover, the density functional theory study reveals better thermodynamic and electronic stabilities. These compounds have reduced HOMO-LUMO gaps (EH-L) ranging from 3.66 to 3.60 eV, indicating their remarkable conductive and electronic properties. The significant reduction in EH-L also guarantees our synthesized compounds' soft nature and reactivity. Our studied compound's NBO charges and MEPs analysis show electron-rich sites and donor-acceptor mechanism. Our synthesized compounds have remarkable polarizability (alpha o) and hyperpolarizability (beta o) values (446.23 - 1312.73 au), which indicates their optical and nonlinear optical properties. The density of states spectra further illustrates their notable structural-electronic properties and reduced band gaps. Based on structural activity relationship studies, we found that these tetrahydro-isoquinolines derivatives are potent against microsomal prostaglandin E synthase 1(MPGES1), the docking analysis shows that studied compounds have a good binding affinity with MPGES1, and further ADME/T analysis was carried out for both compounds. In addtion to this molecular dynamics, studies were performed to understand the binding stability of both compounds in protien complex system during 100 ns simulation.Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据