4.7 Article

Genome-wide identification and evolutionary analysis of the FGF gene family in buffalo

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2256861

关键词

FGF gene family; buffalo; enomic characterization; mutations; gene duplications

向作者/读者索取更多资源

This study investigates the FGF gene family in buffalo through in silico analyses, identifying 22 FGF genes and characterizing their physicochemical properties, evolutionary patterns, and mutations. The results demonstrate the conservation of the FGF gene family in buffalo and highlight the potential implications of the identified mutations for animal selection.
Fibroblast growth factors (FGFs) are important polypeptide growth factors that play a critical role in many developmental processes, including differentiation, cell proliferation, and migration in mammals. This study employs in silico analyses to characterize the FGF gene family in buffalo, investigating their genome-wide identification, physicochemical properties, and evolutionary patterns. For this purpose, genomic and proteomic sequences of buffalo, cattle, goat, and sheep were retrieved from NCBI database. We identified a total of 22 FGF genes in buffalo. Physicochemical properties observed through ProtParam tool showed notable features of these proteins including in-vitro instability, thermostability, hydrophilicity, and basic nature. Phylogenetic analysis grouped 22 identified genes into nine sub-families based on evolutionary relationships. Additionally, analysis of gene structure, motif patterns, and conserved domains using TBtools revealed the remarkable conservation of this gene family across selected species throughout the course of evolution. Comparative amino acid analysis performed through ClustalW demonstrated significant conservation between buffalo and cattle FGF proteins. Mutational analysis showed three non-synonymous mutations at positions R103 > G, P7 > L, and E98 > Q in FGF4, FGF6, and FGF19, respectively in buffalo. Duplication events revealed only one segmental duplication (FGF10/FGF22) in buffalo and two in cattle (FGF10/FGF22 and FGF13/FGF13-like) with Ka/Ks values <1 indicating purifying selection pressure for these duplications. Comparison of protein structures of buffalo, goat, and sheep exhibited more similarities in respective structures. In conclusion, our study highlights the conservation of the FGF gene family in buffalo during evolution. Furthermore, the identified non-synonymous mutations may have implications for the selection of animals with better performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据