4.7 Article

Elucidation of furanone as ergosterol pathway inhibitor in Cryptococcus neoformans

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2230301

关键词

Cryptococcus neoformans; antifungal agents; ergosterol; docking; MD simulation; >

向作者/读者索取更多资源

In the era of antiretroviral therapy, the prevalence of Cryptococcal infection among HIV patients in developed countries has decreased considerably. However, C. neoformans ranks top among the critical priority pathogen that affects a wide range of immunocompromised individuals. The threat of C. neoformans is because of its incredibly multifaceted intracellular survival capabilities.
In the era of antiretroviral therapy, the prevalence of Cryptococcal infection among HIV patients in developed countries has decreased considerably. However, C. neoformans ranks top among the critical priority pathogen that affects a wide range of immunocompromised individuals. The threat of C. neoformans is because of its incredibly multifaceted intracellular survival capabilities. Cell membrane sterols especially ergosterol and enzymes of its biosynthetic pathway are considered fascinating drug targets because of their structural stability. In this study, the ergosterol biosynthetic enzymes were modeled and docked with furanone derivatives. Among the tested ligands Compound 6 has shown a potential interaction with Lanosterol 14 & alpha;-demethylase. This best-docked protein-ligand complex was taken further to molecular dynamics simulation. In addition, Compound 6 was synthesized and an in vitro study was conducted to quantify the ergosterol in Compound 6 treated cells. Altogether the computational and in vitro study demonstrates that Compound 6 has anticryptococcal activity by targeting the biosynthetic pathway of ergosterol.Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据