4.7 Article

In-silico structural studies on anti-inflammatory activity of phytocompounds from the genus Andrographis

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2234486

关键词

Andrographis; cyclooxygenases; 5-lipoxygenase; anti-inflammatory; docking; >

向作者/读者索取更多资源

In this study, two secondary metabolites from the genus Andrographis were found to have potent anti-inflammatory activity, with higher binding affinity and stability compared to standard drugs. In-silico ADMET analysis also confirmed the druggability of these compounds. This research serves as a foundation for future in-vitro and in-vivo experimental studies to validate their anti-inflammatory potential.
Plant species from the genus Andrographis were used in Ayurveda and in other folklore medicines for treating ailments for centuries. In this study, we have hypothesized to evaluate the secondary metabolites as potent anti-inflammatory agents from the genus Andrographis. A library of secondary metabolites of the said genus was curated from the PubChem database and was subjected to energy minimization using UCSF Chimera software employing the AMBER force field. Initially, molecular docking was performed to evaluate the binding affinity of the curated library against the enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and 5-Lipoxygenase (5-LOX) using AutoDock Vina. This resulted in shortlisting of two metabolites Echioidinin 5-O-glucoside was bound and 5,2',6'-Trihydroxy-6,7,8-trimethoxy flavone 2'-O-glucoside with high binding affinity than standard drugs Ibuprofen and Zileuton. In addition, molecular dynamic simulation studies confirm that these compounds form relatively more stable complexes than standard drugs with the above-said enzymes. The free binding energy values using MMGBSA of the above said ligands with COX-1, COX-2, and 5-LOX were found to be -49.18 kcal/mol, -38.60 kcal/mol, and -54.27 kcal/mol respectively, Whereas the standards have -21.77 kcal/mol, -9.96 kcal/mol, and -10.29 kcal/mol. Moreover, the in-silico ADMET analysis confirms the druggability of the shortlisted compounds. Later, this work will act as a base for in-vitro and in-vivo experimental studies to validate the anti-inflammatory potential of the same.Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据