4.5 Article

Automated Discrimination of Dicentric and Monocentric Chromosomes by Machine Learning-Based Image Processing

期刊

MICROSCOPY RESEARCH AND TECHNIQUE
卷 79, 期 5, 页码 393-402

出版社

WILEY
DOI: 10.1002/jemt.22642

关键词

biodosimetry; software development; support vector machines; cytogenetics; radiation exposure

资金

  1. University of Western Ontario
  2. Canada Research Chairs Secretariat
  3. Canadian Foundation for Innovation

向作者/读者索取更多资源

Dose from radiation exposure can be estimated from dicentric chromosome (DC) frequencies in metaphase cells of peripheral blood lymphocytes. We automated DC detection by extracting features in Giemsa-stained metaphase chromosome images and classifying objects by machine learning (ML). DC detection involves (i) intensity thresholded segmentation of metaphase objects, (ii) chromosome separation by watershed transformation and elimination of inseparable chromosome clusters, fragments and staining debris using a morphological decision tree filter, (iii) determination of chromosome width and centreline, (iv) derivation of centromere candidates, and (v) distinction of DCs from monocentric chromosomes (MC) by ML. Centromere candidates are inferred from 14 image features input to a Support Vector Machine (SVM). Sixteen features derived from these candidates are then supplied to a Boosting classifier and a second SVM which determines whether a chromosome is either a DC or MC. The SVM was trained with 292 DCs and 3135 MCs, and then tested with cells exposed to either low (1 Gy) or high (2-4 Gy) radiation dose. Results were then compared with those of 3 experts. True positive rates (TPR) and positive predictive values (PPV) were determined for the tuning parameter, sigma. At larger sigma, PPV decreases and TPR increases. At high dose, for sigma = 1.3, TPR = 0.52 and PPV = 0.83, while at sigma = 1.6, the TPR = 0.65 and PPV = 0.72. At low dose and sigma = 1.3, TPR = 0.67 and PPV = 0.26. The algorithm differentiates DCs from MCs, overlapped chromosomes and other objects with acceptable accuracy over a wide range of radiation exposures. (C) 2016 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据