4.7 Article

Effects of structure and strain rate on deformation mechanism of twin lamellar Al0.3CoCrFeNi alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 954, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.170174

关键词

Nano-twins; Tension; Molecular dynamics simulation; Hall; Petch relationship; Mechanical property; Phase transition

向作者/读者索取更多资源

The deformation properties and mechanical behavior of the lamellar twined Al0.3CoCrFeNi high-entropy alloys (HEA) sample were studied using molecular dynamics (MD) simulations. The results showed different mechanical characteristics under different twin inclination angles and strain rates. It was also found that the flow stress, ultimate strength, and Young's modulus increased with increasing strain rate and decreasing temperature.
Lamellar twined materials display simultaneous ultrahigh strength and high ductility, which is attributed to the interaction between twin boundaries and dislocation. However, deformation at the atomic level is rarely seen in experiments. To study the deformation properties and mechanical behavior of the lamellar twined Al0.3CoCrFeNi high-entropy alloys (HEA) sample, we applied the uniaxial tension by employing molecular dynamics (MD) simulations. The impact of various twin inclination angles, twin boundary spacing (TBS), and strain rates are investigated. The mechanical softening as the increasing TBS from 4a to 12a was ob-served, which corresponds to Hall - Petch relationship. The yield strength of the medium inclination angle (450, 600) records the minimum value with all various TBS due to the elastic energy being easier released. The strain-hardening phenomenon appears at these angles. The sample with an inclination angle per-pendicular to the tension loading axis (900) displays the highest stress value. The shrinking migration twin has been observed in 00, 150, and 300 twin inclination angles. The migration and disappearance of initial TBs lead to grains being reoriented into the same orientation at 450 and 600. With twin orientations of 750 and 900, the TB is no longer as crisp and straight as the initial TB under the tension process. An extensive dislocation process occurs at higher strain values, and their interaction with TB leads to establishing the shear band. After that, twin boundaries within the shear band are almost destroyed. Besides, the results also indicate that the flow stress, ultimate strength, and Young's modulus rise with the rising strain rate and decreasing temperature. (c) 2023 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据