4.7 Article

Effects of ZnO addition on the microstructure/corrosion, wear and mechanical properties of sintered Mg-Al matrix composites

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 958, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.170500

关键词

Magnesium; Composite; Powder metallurgy; Mechanical properties; Corrosion; Wear Friction

向作者/读者索取更多资源

Magnesium (Mg)-based composites offer excellent properties for various applications. This study focused on synthesizing Mg-Al-ZnO composites and analyzing their microstructures and properties. ZnO particles were uniformly distributed in the composite samples. The selection of composite samples for friction and wear applications should be based on their different responses to friction and wear.
Magnesium (Mg)-based composites offer outstanding properties, which make them suitable materials for various applications in medical, aerospace and energy sectors, among others. The wide applications of Mg-based composites have attracted continuous effort to increase their properties and performances. Therefore, the present work focused on synthesizing magnesium-aluminium-zinc oxide (Mg-Al-ZnO) composites. Mg-3Al-xZnO (x = 3, 6 and 9 wt%) composites were prepared using powder metallurgy (PM) route. The com-posite powders and sintered composites were analyzed to determine their microstructures, using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. In addition, the sintering process took place in argon atmosphere at 450 degrees C. The quantitative analyses of density, porosity, hardness, com-pressive strength (CS) and corrosion rate (CR) of the composites were performed. Wear performance was also studied with various wear control parameters, such as the sliding velocity (V), sliding distance (D), applied load (P) as well as ZnO content. Pin-on-disc apparatus was used to determine the wear rate (WR) and coefficient of friction (COF) of the innovatively prepared Mg-3 wt%Al-ZnO composites. The experi-mental study was conducted in accordance with Taguchi's L16 orthogonal design. Signal-to-noise (S/N) ratio analysis was employed to determine the best combination of parameters for WR and COF. Summarily, SEM images confirmed that ZnO particles were uniformly distributed in the composite samples. Statistical technique, called analysis of variance (ANOVA), was adopted to find the significant factor which affected WR and COF. The P significantly affected the WR, followed by the inclusion of ZnO. But, with respect to COF, ZnO reinforcement inclusion affected COF significantly when compared with the P. Both V and D did not affect WR and COF. Hence, the application of the various composite samples should depend on their various responses to friction and wear, especially in working conditions where both quantities are inevitable.(c) 2023 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据