4.7 Article

Bismuth-rich Bi12O17Cl2 nanorods engineered with oxygen vacancy defects for enhanced photocatalytic nitrogen fixation

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 952, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.170015

关键词

Photocatalysis; Nitrogen fixation; Bismuth oxyhalides; Oxygen vacancies; Ammonia production

向作者/读者索取更多资源

Defective bismuth-rich oxychloride with oxygen vacancies (BOC-OV) was synthesized and optimized for N2 photo-fixation. The introduction of oxygen vacancies greatly improved the photo-absorption range, charge dynamics, and charge separation efficiency of the photocatalyst. The defect-rich BOC-OV sample exhibited a notable NH3 generation rate under solar irradiation.
Ammonia (NH3) is an indispensable chemical that serves as a key precursor in the production of a wide array of commercially essential nitrogenous compounds. The catalytic conversion of nitrogen (N2) to NH3 is a kinetically complicated and energetically demanding reaction. In this regard, the inception of photocatalytic N2 fixation which operates under mild conditions holds great promise as a sustainable alternative to the conventional Haber-Bosch process. Herein, defective bismuth-rich oxychloride with oxygen vacancies (BOC-OV) was synthesized and optimized for N2 photo-fixation. The fabrication encompassed a two-step hydrothermal and post-synthesis inert annealing for the induction of oxygen vacancies (OVs). Through the introduction of OVs, the bismuth-rich photocatalyst garnered a massively improved photo-absorption range, enhanced charge dynamics, and increased efficiency of charge separation. The defects generated also provided an abundance of active sites to ease N2 adsorption and overcome the energy barrier for the activation of N2 molecules. The defect-rich BOC-OV sample exhibited a notable NH3 generation rate of 23.43 mu mol gcat-1 h-1 in pure water under solar irradiation. On the basis of the experimental findings, this study discloses insights into the rational engineering of OVs and presents the OV-induced bismuth-rich oxychloride as a promising material for the realization of a highly efficient and sustainable photo-driven N2 fixation system.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据