4.7 Article

Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation

期刊

MICROPOROUS AND MESOPOROUS MATERIALS
卷 226, 期 -, 页码 94-103

出版社

ELSEVIER
DOI: 10.1016/j.micromeso.2015.12.048

关键词

Metal-organic framework; MIL-101; Ruthenium; Phenol; Hydrogenation

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [113Z307]

向作者/读者索取更多资源

Ruthenium(0) nanoparticles stabilized by MIL-101 metal-organic framework (Ru/MIL-101) were prepared via gas phase infiltration of Ru(cod) (cot) (cod = 1,5-cyclooctadiene, cot = 1,3,5-cyclooctatriene) followed by hydrogenolysis of Ru(cod) (cot)@MIL-101 at 3 bar H-2 and 323 K. The resulting material was characterized by using various analytical tools including ICP-OES, EA, P-XRD, XPS, DR-UV-VIS, SEM, BFTEM, HRTEM, STEM-EDX, CO-chemisorption and N-2-adsorption-desorption technique, which revealed that the formation of ruthenium(0) nanoparticles (4.2 +/- 1.2 nm) mainly exist on the surface of MIL-101 by keeping the host framework intact. The application of Ru/MIL-101 in catalysis by considering their activity, selectivity and reusability was demonstrated in the phenol hydrogenation under mild conditions. Ru/MIL-101 acted as active (lower-limit TOF = 29 mol cyclohexanone/mol Ru x h; corrected TOF = 88 mol cydohexanone/mol Ru x h. at >= 90% conversion) and selective (>= 90%) catalyst in the hydrogenation of phenol to cyclohexanone in water at 323 K and 5 bar initial H-2 pressure. More importantly, the resulting ruthenium(0) nanoparticles in Ru/MIL-101 were found to be highly durable throughout the catalytic reuse in the phenol hydrogenation (retain >= 85% of their inherent activity and selectivity at 5th reuse), which makes Ru/MIL-101 a reusable catalytic material for the liquid phase mediated catalytic transformations. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据