4.6 Article

Experimental and FEM investigation of bending behaviors of S-core sandwich panel composites

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2023.112546

关键词

Sandwich panel composites; Three-point bending test; S-core; Finite element modeling; Mechanical behavior

向作者/读者索取更多资源

Sandwich panel composites have various applications and their mechanical behavior and performance depend on material properties and geometry. The load-carrying capacity of S-core composite sandwich panels increases with the increase of the core wall thickness, but decreases with the increase of the core height.
Sandwich panel composites have numerous applications in material technology. The sandwich panel composite structure's mechanical behavior and performance are determined by the material properties and geometry of the relevant components. The top and bottom sheets of the designed sandwich panel composite material are made of stainless steel-316, the core material is aluminum 1050A-0, and the binding element is DP-8405 acrylic adhesive. Three-point bending tests and finite element models were utilized to investigate the bending behavior of S-core composite sandwich panels. Finite element models have been developed to characterize the effect of composite element bending behavior on variations. The specific flexural modulus and strength of composite S-core sand-wich structures can be compared to core structures in the literature in general. As a consequence, the minimum weight design was used as a guideline to produce weight and density-efficient hybrid composite sandwich panels. The load-carrying capacity of the composite panel increased as the wall thickness of the S-shaped core increased when the damage loads were examined in the variations. It has been ascertained that as the core height increases, the load-carrying capacity of the composite panel decreases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据