4.5 Article

Experimental investigation of a supersonic close-coupled atomizer employing the phase Doppler measurement technique

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2023.104544

关键词

Close-coupled atomization; Supersonic gas atomization; Phase Doppler measurement technique; Metal powder production

向作者/读者索取更多资源

With the increasing economic importance of metal additive manufacturing by laser powder bed fusion, the demand for high-quality metal powders is also rising. However, the physics involved in supersonic close-coupled gas atomization, which is often used for producing these powders, are not well understood due to scarce experimental data, resulting in a lack of reliable predictive modeling capabilities.
Along with the growing economic importance of metal additive manufacturing by means of laser powder bed fusion, the demand for high-quality metal powders as the corresponding raw material is also increasing. However, the physics involved in supersonic close-coupled gas atomization, which is often employed for the production of these powders, are not well understood and extensive experimental data is scarce, leading to a lack of reliable predictive modeling capabilities.In this experimental study, local particle size and velocity distributions for the spray produced by a generic supersonic close-coupled atomizer are obtained using the phase Doppler measurement technique. The gas stagnation pressure and the liquid mass flow rate are varied systematically and independently. Three working liquids are considered, investigating the influence of the liquid dynamic viscosity on the atomization result.The particle size is shown to be sensitive to changes in both the gas stagnation pressure and the liquid mass flow rate. Notably, it is not an unambiguous function of the gas-to-liquid ratio. Furthermore, the effect of the liquid dynamic viscosity appears to be negligible. In conclusion, these are important insights for formulating physics-based models for the supersonic close-coupled atomization process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据