4.7 Article

TMT and PRM Based Quantitative Proteomics to Explore the Protective Role and Mechanism of Iristectorin B in Stroke

期刊

出版社

MDPI
DOI: 10.3390/ijms242015195

关键词

Iristectorin B; stroke; ferroptosis; quantitative proteomics; tandem mass tag; parallel reaction monitoring

向作者/读者索取更多资源

The natural isoflavone Iristectorin B showed anti-stroke activity by reducing PC12 cell damage caused by oxygen glucose deprivation/reoxygenation and regulating ferroptosis. SLC3A2, TFR1, and HMOX1 were identified as potential diagnostic biomarkers for stroke.
Stroke is a serious disease caused by the rupture or blockage of the cerebrovascular system. Its pathogenesis is complex and involves multiple mechanisms. Iristectorin B is a natural isoflavone that has certain anti stroke effects. In this study, an in vitro stroke injury model of glyoxylate deprivation was established using PC12 cells, which was used to evaluate the anti-stroke activity of Iristectorin B in ejecta stem. The results showed that Iristectorin B, a natural isoflavone derived from Dried Shoot, significantly reduced the damage to PC12 cells caused by oxygen glucose deprivation/reoxygenation, decreased apoptosis, enhanced cell survival and reduced Ca2+, LDH and ROS levels. The results showed that Iristectorin B had a significant protective effect on Na2S2O4-injured PC12 cells, and the mechanism may be related to the protective effect of neurons in the brain. After protein extraction and various analyses were performed, a series of cutting-edge technologies were organically combined to study the quantitative proteome of each group. Differential proteins were then analyzed. According to the protein screening principle, ferroptosis-related proteins were most closely associated with stroke. The differential proteins associated with ferroptosis screened were SLC3A2, TFR1 and HMOX1, with HMOX1 being the most significantly elevated and reduced via dosing. Iristectorin B may act as a protective agent against stroke by regulating ferroptosis, and SLC3A2, TFR1 and HMOX1 may serve as potential diagnostic biomarkers for stroke, providing additional evidence to support the importance of ferroptosis in stroke.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据