4.7 Article

The Expression of P35 Plays a Key Role in the Difference in Apoptosis Induced by AcMNPV Infection in Different Spodoptera exigua Cell Lines

期刊

出版社

MDPI
DOI: 10.3390/ijms241713228

关键词

AcMNPV; apoptosis; caspase gene; P35; Spodoptera exigua

向作者/读者索取更多资源

Different Spodoptera exigua cell lines showed different apoptosis responses during Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection. The activation of SeCaspase-1 to -6 and the inhibition of iap1, iap2, and p35 in Se-1 cells contributed to severe apoptosis, while the opposite occurred in Se-3 cells. The different expression of P35 was identified as an important reason for the apoptosis differences between the two cell lines.
Baculovirus infection induces apoptosis in host cells, and apoptosis significantly affects virus production. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can regulate apoptosis, but the regulatory mechanism is unclear. Here, we found that AcMNPV infection induced different apoptosis responses in different Spodoptera exigua cell lines. In the early stages of viral infection (1-6 h), Se-1 cells underwent severe apoptosis, while Se-3 cells underwent very slight apoptosis. In the late stages of viral infection (12-72 h), Se-1 cells continued to undergo apoptosis and formed a large number of apoptotic bodies, while the apoptosis of Se-3 cells was inhibited and no apoptotic bodies were formed. To determine the reasons for the apoptosis differences in the two cell lines, we measured the expression of the six S. exigua cysteine-dependent aspartate specific protease genes (SeCaspase-1 to -6) and the three AcMNPV antiapoptotic protein genes (iap1, iap2 and p35) during viral infection. We found that SeCaspase-1 to -6 were all activated in Se-1 cells and inhibited in Se-3 cells, whereas iap1, iap2 and p35 were all inhibited in Se-1 cells and normally expressed in Se-3 cells. And p35 was expressed earlier than iap1 and iap2 in Se-3 cells. Otherwise, Se-1 and Se-3 cells would all be apoptotic when infected with the recombinant p35 knockout AcMNPV, whereas only Se-1 cells were apoptotic, but Se-3 cells were not apoptotic when infected with the recombinant p35 repair AcMNPV. Combined with the fact that the expression of P35 protein is inhibited in Se-1 cells but normally expressed in Se-3 cells during the infection of recombinant p35 repair AcMNPV, we proposed that the different expression of P35 is an important reason for the apoptosis differences between the two cell lines. We also found that some genes associated with apoptosis can probably regulate the expression of P35. However, the major upstream regulators of P35 and their mechanisms are still unclear and will be studied in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据