4.7 Article

Transcriptomic Profiling of Tomato Leaves Identifies Novel Transcription Factors Responding to Dehydration Stress

期刊

出版社

MDPI
DOI: 10.3390/ijms24119725

关键词

tomato; dehydration response; drought tolerance; RNA-Seq; transcriptome; transcription factor

向作者/读者索取更多资源

Drought has a significant impact on tomatoes, leading to tissue dehydration and decreased yield. The key genes involved in dehydration response and tolerance in tomatoes are still not well understood. Dehydration decreases the relative water content of tomato leaves and promotes the content of malondialdehyde and ion leakage. Dehydration also triggers oxidative stress and enhances the activity of antioxidant enzymes.
Drought is among the most challenging environmental restrictions to tomatoes (Solanum lycopersi-cum), which causes dehydration of the tissues and results in massive loss of yield. Breeding for dehydration-tolerant tomatoes is a pressing issue as a result of global climate change that leads to increased duration and frequency of droughts. However, the key genes involved in dehydration response and tolerance in tomato are not widely known, and genes that can be targeted for dehydration-tolerant tomato breeding remains to be discovered. Here, we compared phenotypes and transcriptomic profiles of tomato leaves between control and dehydration conditions. We show that dehydration decreased the relative water content of tomato leaves after 2 h of dehydration treatment; however, it promoted the malondialdehyde (MDA) content and ion leakage ratio after 4 h and 12 h of dehydration, respectively. Moreover, dehydration stress triggered oxidative stress as we detected significant increases in H2O2 and O2- levels. Simultaneously, dehydration enhanced the activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia-lyase (PAL). Genome-wide RNA sequencing of tomato leaves treated with or without dehydration (control) identified 8116 and 5670 differentially expressed genes (DEGs) after 2 h and 4 h of dehydration, respectively. These DEGs included genes involved in translation, photosynthesis, stress response, and cytoplasmic translation. We then focused specifically on DEGs annotated as transcription factors (TFs). RNA-seq analysis identified 742 TFs as DEGs by comparing samples dehydrated for 2 h with 0 h control, while among all the DEGs detected after 4 h of dehydration, only 499 of them were TFs. Furthermore, we performed real-time quantitative PCR analyses and validated expression patterns of 31 differentially expressed TFs of NAC, AP2/ERF, MYB, bHLH, bZIP, WRKY, and HB families. In addition, the transcriptomic data revealed that expression levels of six drought-responsive marker genes were upregulated by de-hydration treatment. Collectively, our findings not only provide a solid foundation for further functional characterization of dehydration-responsive TFs in tomatoes but may also benefit the improvement of dehydration/drought tolerance in tomatoes in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据