4.5 Article

Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 20, 期 1, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-015-1669-y

关键词

Fluid-conveying pipes; Nonlinear vibration and stability; Surface stress effect; Gurtin-Murdoch elasticity continuum; Differential quadrature method; Harmonic balance method

向作者/读者索取更多资源

This paper is aimed to examine the geometrically nonlinear vibration and stability of nanoscale pipe conveying fluid incorporating surface stress effect. To approach this, the von-Karman hypothesis and Timoshenko beam theory are used to model the nanoscale pipe as a nonlinear Timoshenko nanobeam. Then, Hamilton's principle and the Gurtin-Murdoch continuum elasticity are used to derive the governing equations of motion and associated boundary conditions incorporating the surface stress effect. Afterward, by the generalized differential quadrature method and harmonic balance method, the obtained nonlinear differential equations are discretized and simplified, before solving numerically through the Newton-Raphson method. The effects of the surface stress parameters on the stability and imaginary and real parts of frequency of nanopipes are discussed. Results are performed for nanopipes with different end supports made of silicon (Si) and aluminum (Al).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据