4.7 Article

Exploring the Syndecan-Mediated Cellular Internalization of the SARS-CoV-2 Omicron Variant

期刊

出版社

MDPI
DOI: 10.3390/ijms241814140

关键词

SARS-CoV-2; Delta variant; Omicron; cellular entry; endocytosis; syndecan; heparan sulfate proteoglycans

向作者/读者索取更多资源

SARS-CoV-2 variants, particularly Delta and Omicron, exhibit differential cellular uptake mechanisms, with Omicron relying primarily on HSPGs for entry. Delta variant benefits from SDC1, 2, and 4 overexpression, while SDC4 has the most prominent effect on Omicron internalization.
SARS-CoV-2 variants evolve to rely more on heparan sulfate (HS) for viral attachment and subsequent infection. In our earlier work, we demonstrated that the Delta variant's spike protein binds more strongly to HS compared to WT SARS-CoV-2, leading to enhanced cell internalization via syndecans (SDCs), a family of transmembrane HS proteoglycans (HSPGs) facilitating the cellular entry of the original strain. Using our previously established ACE2- or SDC-overexpressing cellular models, we now compare the ACE2- and SDC-dependent cellular uptake of heat-inactivated WT SARS-CoV-2 with the Delta and Omicron variants. Internalization studies with inactivated virus particles showed that ACE2 overexpression could not compensate for the loss of HS in Omicron's internalization, suggesting that this variant primarily uses HSPGs to enter cells. Although SDCs increased the internalization of all three viruses, subtle differences could be detected between their SDC isoform preferences. The Delta variant particularly benefitted from SDC1, 2, and 4 overexpression for cellular entry, while SDC4 had the most prominent effect on Omicron internalization. The SDC4 knockdown (KD) in Calu-3 cells reduced the cellular uptake of all three viruses, but the inhibition was the most pronounced for Omicron. The polyanionic heparin also hindered the cellular internalization of all three viruses with a dominant inhibitory effect on Omicron. Omicron's predominant HSPG affinity, combined with its preference for the universally expressed SDC4, might account for its efficient transmission yet reduced pathogenicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据