4.5 Article

Significance of induced magnetic force for bioconvective transport of thixotropic nanofluid with variable thermal conductivity

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217979223502983

关键词

Induced magnetic force; bioconvective flow; thixotropic nanofluid; variable thermal conductivity; thermal radiation

向作者/读者索取更多资源

This study aims to report the significance of induced magnetic force for non-Newtonian nanofluid containing microorganisms. The thixotropic non-Newtonian fluid model is used to classify the distinct rheological impact. The bioconvective thermal model is presented in view of variable thermal conductivity. The problem is further entertained with thermal radiation impact and activation energy.
Owing to novel thermos-physical properties, various applications of nanofluids are noted in thermal systems, solar energy, extrusion framework, industrial processes, cooling system, heating devices and biomedical applications. In order to attain more thermal impact of nanofluids, various features are endorsed by researchers. However, the thermal applications of nanofluids with interaction of induced magnetic field intended less attention. The aim of this study is to report the significance of induced magnetic force for non-Newtonian nanofluid containing microorganisms. The thixotropic non-Newtonian fluid model is used to classify the distinct rheological impact. The bioconvective thermal model is presented in view of variable thermal conductivity. The problem is further entertained with thermal radiation impact and activation energy. The convective boundary conditions are used to simulate the computations. The governing system is first reduced into dimensionless models which are numerically treated with implementation of shooting technique. The physical parameters report high fluctuation in the thermal phenomenon which are carefully evaluated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据