4.4 Article Proceedings Paper

Patterning of multilayer graphene on glass substrate by using ultraviolet picosecond laser pulses

期刊

MICROELECTRONIC ENGINEERING
卷 158, 期 -, 页码 1-5

出版社

ELSEVIER
DOI: 10.1016/j.mee.2016.01.012

关键词

Ultrafast laser; Picosecond laser; Laser ablation; Multilayer graphene; Thin films; Patterning graphene

向作者/读者索取更多资源

This paper presents an approach that involves directly patterning multilayer graphene on a glass substrate by using ultraviolet picosecond (PS) laser irradiation. The PS laser is ultrafast, with a pulse duration of 15 ps, and can be operated at a wavelength of 355 nm. In this study, the multiple pulse ablation threshold fluence for patterning multilayer graphene was 5.2 J/cm(2), with a pulse repetition rate of 200 kHz and at a fixed scanning speed of 250 mm/s. The effect of laser parameters on the width, depth, and quality of patterning was explored. To investigate laser-nonablated and laser-ablated multilayer graphene, the characteristics of graphene thin film were measured using Raman, transmittance, and electrical analyses. The experimental results revealed that the PS laser is a promising and competitive tool for ablating multiple layers to several layers of graphene thin films and even for completely removing graphene thin-film layers. The PS laser technique can be useful in developing graphene-based devices. Moreover, this approach has the potential for industrial applications. (C) 2016 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据