4.7 Article

Dual cross-linked gellan gum/gelatin-based multifunctional nanocomposite hydrogel scaffold for full-thickness wound healing

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.126349

关键词

Gellan gum; Gelatin; Full-thickness wound healing

向作者/读者索取更多资源

This research focuses on fabricating biological macromolecule-based hydrogel with desirable antibacterial, antioxidant, controlled drug release, cytocompatibility, and wound healing properties. The nanocomposite hydrogel loaded with 500 mu g/ml NC exhibited excellent performance in treating full-thickness wound healing.
Biological macromolecules are excellent materials for wound dressing owing to their similar structure to the extracellular matrix and adjustable physicochemical properties. This research focuses on fabricating biological macromolecule-based hydrogel with desirable antibacterial, antioxidant, controlled drug release, cytocompatibility, and wound healing properties. Herein, different concentrations of nanoceria (NC) and flurbiprofen (FLU) drug-loaded gellan gum/gelatin (GG/Ge) based dual crosslinked (Ionic and EDC/NHS coupling) hydrogels were engineered. All fabricated hydrogels were hydrophilic, biodegradable, good strength, porous, antioxidant, hemocompatible and cytocompatible. Among all, hydrogel loaded with 500 mu g/ml NC (GG/Ge/NC@FLU) exhibited desirable antioxidant, antibacterial (killed Staphylococcus aureus and Escherichia coli within 12 h), hemocompatible, cytocompatible, supports oxidative-stressed L929 cell growth and acted as a controlled release matrix for FLU, following Fickian diffusion, Peppas Sahlin and Korsmeyer-Peppas drug release models. Furthermore, nanocomposite hydrogel (GG/Ge/NC@FLU)-treated wounds of rats on day 14 demonstrated significantly higher collagen synthesis, nearly 100 % wound contractions, and efficiently decreased the expression of TNF-alpha and IL-1 while increasing the production of IL-10 and TNF-ss3, indicating antiinflammatory activity, and effectively reduced the expression of VEGF gene indicating effective angiogenesis than all other controls. In conclusion, the fabricated multifunctional GG/Ge/NC@FLU nanocomposite hydrogel shows promising potential for effectively treating full-thickness wound healing in a rat model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据