4.7 Article

Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.125134

关键词

Chitosan; Polyacrylic acid; Graphitic carbon nitride

向作者/读者索取更多资源

A novel pH-sensitive nanocarrier was designed using chitosan, polyacrylic acid, and graphitic carbon nitride via water/oil/water emulsification for curcumin drug delivery. The incorporation of g-C3N4 into CS/PAA hydrogel was achieved, providing a high drug loading capacity and pH-sensitive release profile. The nanocarrier showed excellent efficacy in eliminating cancer cells and has great potential for controlled drug release.
A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fouriertransform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据