4.7 Article

In-silico identification of lysine residue for lysozyme immobilization on dialdehyde cellulose

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.125367

关键词

Lysozyme immobilization; Dialdehyde cellulose; Refinement; Docking software

向作者/读者索取更多资源

In the realm of enzymes, the Enzyme Immobilization technique can be extremely beneficial. More research into computational approaches could lead to a better understanding as well as lead us in the direction of a more environmentally friendly and greener path. This study used molecular modelling techniques to investigate the immobilization of Lysozyme on Dialdehyde Cellulose. The results showed that lysine was the most likely amino acid residue to interact with dialdehyde cellulose. Different docking programs were used to analyze the binding affinity and interaction similarity of modified lysozyme with its substrate.
In the realm of enzymes, the Enzyme Immobilization technique can be extremely beneficial. More research into computational approaches could lead to a better understanding as well as lead us in the direction of a more environmentally friendly and greener path. In this study, molecular modelling techniques were used to collect information regarding the immobilization of Lysozyme (EC 3.2.1.17) on Dialdehyde Cellulose (CDA). Lysine, being the most nucleophilic, is most likely to interact with dialdehyde cellulose. Enzyme substrate interactions have been studied with and without the refinement of modified lysozyme molecules. A total of six CDA-modified lysine residues were selected for the study. The docking process for all modified lysozymes was carried out using four distinct docking programs: Autodock Vina, GOLD, Swissdock, and iGemdock. The binding affinity (-7.8 & -8.0 kcal mol-1 in case of non-refinement and -4.7 & -5.0 kcal mol-1 in case of refinement), calculated from Autodock vina, as well as the interaction similarity of Lys116 immobilized lysozyme with its substrate, were found to be 75 % (W/o simulation) & 66.7 % (With simulation) identical with the reference case (unmodified lysozyme) if Lys116 is bound to Dialdehyde Cellulose. The approach described here is utilized to identify amino acid residues that are used in the immobilization of lysozyme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据