4.4 Article

Coupling finite elements of class C1 on composite curved meshes for second order elliptic problems

期刊

出版社

WILEY
DOI: 10.1002/fld.5241

关键词

alternating Schwarz method; composite meshes; Hermite-Bezier finite elements; isoparametric finite elements; reduced Hsieh-Clough-Tocher finite elements

向作者/读者索取更多资源

Finite elements of class C-1 are used for computing magnetohydrodynamics instabilities in tokamak plasmas, and isoparametric approximations are employed to align the mesh with the magnetic field line. This numerical framework helps in understanding the operation of existing devices and predicting optimal strategies for the international ITER tokamak. However, a mesh-aligned isoparametric representation encounters issues near critical points of the magnetic field, which can be addressed by combining aligned and unaligned meshes.
Finite elements of class C-1 are suitable for the computation of magnetohydrodynamics instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a precise alignment of the mesh with the magnetic field line. Mesh alignment is crucial to achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy nature of magnetized plasma flows. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamak under construction. However, a mesh-aligned isoparametric representation suffers from the presence of critical points of the magnetic field (magnetic axis, X-point). We here explore a strategy that combines aligned mesh out of the critical points with non-aligned unstructured mesh in a region containing these points. By this strategy, we can avoid highly stretched elements and the numerical difficulties that come with them. The mesh-aligned interpolation uses bi-cubic Hemite-Bezier polynomials on a structured mesh of curved quadrangular elements. On the other hand, we assume reduced cubic Hsieh-Clough-Tocher finite elements on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation is a coupled discrete problem solved iteratively by a suitable one-level Schwarz algorithm. In this paper, we will focus on the Poisson problem on a two-dimensional bounded regular domain. This elliptic equation is a simplified version of the axisymmetric tokamak equilibrium one at the asymptotic limit of infinite major radius (large aspect ratio).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据