4.7 Article

CXCL1 enhances COX-II expression in rheumatoid arthritis synovial fibroblasts by CXCR2, PLC, PKC, and NF-κB signal pathway

期刊

INTERNATIONAL IMMUNOPHARMACOLOGY
卷 124, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.intimp.2023.110909

关键词

CXCL1; Rheumatoid arthritis; Synovial fibroblasts; COX-II

向作者/读者索取更多资源

This study provides novel insights into the role of CXCL1 in the pathogenesis of rheumatoid arthritis by promoting COX-II expression to regulate disease progression.
Rheumatoid arthritis (RA) is the most common autoimmune disease, affecting the joints of the hands and feet. Several chemokines and their receptors are crucial in RA pathogenesis through immune cell recruitment. C-X-C Motif Chemokine Ligand 1 (CXCL1), a chemokine for the recruitment of various immune cells, can be upregulated in patients with RA. However, the discussion on the role of CXCL1 in RA pathogenesis is insufficient. Here, we found that CXCL1 promoted cyclooxygenase-2 (COX-II) expression in a dose- and time-dependent manner in rheumatoid arthritis synovial fibroblasts (RASFs). CXCL1 overexpression in RASFs led to a significant increase in COX-II expression, while the transfection of RASFs with the shRNA plasmid resulted in a noticeable decrease in COX-II expression. Next, we delineated the molecular mechanism underlying CXCL1-promoted COX-II expression and noted that CXC chemokine receptor 2 (CXCR2), phospholipase C (PLC), and protein kinase C (PKC) signal transduction were responsible for COX-II expression after CXCL1 incubation for RASFs. Finally, we confirmed the transcriptional activation of nuclear factor kappa B (NF-kappa B) in RASFs after incubation with CXCL1. In conclusion, the current study provided a novel insight into the role of CXCL1 in RA pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据