4.5 Article

Peroxidase-like biomimetic epoxidation and subsequent alcoholysis of olefins by Fe(III)tetrakis(4-sulphonatophenyl) porphyrin (Fe4SP) encapsulated in the metal-organic framework HKUST-1

期刊

INORGANICA CHIMICA ACTA
卷 552, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ica.2023.121483

关键词

Epoxidation; Biomimetic; Catalysis; HKUST-1; Peroxidase; Heme

向作者/读者索取更多资源

The Fe4SP@HKUST-1 metal organic framework system demonstrates efficient catalytic properties similar to enzyme substrate binding protein pockets. The encapsulation of Fe4SP within the MOF framework significantly enhances its catalytic performance while reducing degradation and maintaining selectivity. This provides a basis for developing bio-inspired heme-based MOF catalysts.
The efficiency and diverse functionality of biological catalysts has inspired the synthetic design of systems to mimic the stabilizing and catalytic properties of enzyme substrate binding protein pockets. One such system is the Fe4SP@HKUST-1 metal organic framework (MOF) system, also known as MOMzyme-1, in which Fe(III) tetrakis(4-sulphonatophenyl)porphyrin (Fe4SP) is encapsulated within the cuboctahedral cavities of the HKUST-1 MOF. Within this system the Fe4SP heme active site is encapsulated in a pseudo protein pocket within the MOF. Here, the ability of the Fe4SP@HKUST-1 to catalyze the tandem epoxidation of olefins followed by selective alcoholysis is examined. It is observed that encapsulation of Fe4SP within the MOF framework significantly enhances the turnover number (TON) of peroxide-driven epoxidation of styrene while greatly reducing metalloporphyrin degradation and maintaining stereoisomer selectivity. The Fe4SP@HKUST-1 cata-lyzes both the olefin epoxidation and the subsequent ring opening through the addition of CH3OH. The epoxi-dation of styrene occurs through the hydrogen peroxide generated high valent Fe(IV) = O of the encapsulated Fe4SP while the corresponding ring opening and methanolysis takes place at the Cu metallo building blocks of the HKUST-1 framework. These results provide a framework through which to develop a more extensive library of bio-inspired heme-based MOF catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据